
T E C H N I C A L W H I T E P A P E R

Engineering
Autonomous
Agency
A Systems-First Approach to Agentic Workflows

D

Directives

The What — Markdown SOPs

defining mission and constraints

O

Orchestration

The Manager — LLM reasoning

engine coordinating execution

E

Execution

The How — Deterministic scripts

restoring reliability

Collin Wilkins

collinwilkins.com

1

https://collinwilkins.com/

Executive Summary: Riding the Wave

Every corporate town hall for the next decade will mention “AI this, AI that.” What most

organizations are actually experiencing, however, is a capability overhang—a widening gap

between what frontier models can do and how they are actually deployed.

Today, most teams are still copy‑pasting into chat UIs or wiring together brittle, rule‑based

automations that collapse the moment an API response changes shape. These systems fail not

because the models are weak, but because the architecture is wrong.

To avoid being left behind, AI must stop being treated as a chatbot and start being treated as a

reasoning engine embedded inside a deterministic system. You do not need a massive,

black‑box orchestration framework. You need an architecture that assumes LLM unreliability—

and still produces reliable outcomes.

This paper introduces the Directive–Orchestration–Execution (DOE) Framework: a

builder‑first approach to engineering autonomous workflows that scale in production and

compound in value.

1. Foundational Concepts: The Architectural

Shift

Most automation platforms (Zapier, n8n, Make) are graph‑based. Each node represents a fixed

step: an API call, a filter, a conditional branch. This works and people have built thousands of

systems this way, but it requires specific knowledge of that platform and needs to be tinkered

with for any small failures or changes.

Agentic Workflows have changed the game (automation tools & chatbots vs Agentic Workflows)

Model intelligence just crossed a threshold

Frontier models have gotten really smart, they score 80% on SWE-bench

verified!

2

Tool integration is now standardized

Protocols like MCP (Model Context Protocol) standardized how ai connects

to external tools and dbs

Other frameworks like Directive, Orchestration, Execution (DOE) and Claude

Skills have formalized tool-calling

LLMS (and IDEs) are flexible

Compare n8n (left) vs agentic workflows (right).

An automation that “Onboards a Client” quickly grows from three steps to thirty. Every new edge

case adds branches. Every API change adds maintenance debt. Complexity compounds faster

than value.

Agentic workflows invert this model. They are declarative, not procedural.

You define:

the goal (the Directive),

the tools (Execution scripts),

and delegate path‑finding to a reasoning model acting as the Orchestrator.

The system decides how to get there.

1.1 The PTRMO Loop

Reliable autonomy rests on five pillars:

Planning — Decomposing a high‑level objective into executable sub‑tasks.

3

Tools — Deterministic actions the agent can take (e.g., Python scripts).

Standardizing tools lets everyone use them regardless of model type. Also

ensures consistent inputs and outputs, important for business

Key Insight: You don’t need to wait for people to build them, you can build

own tool from scratch. Let the model build the tools it needs

LLMs are probabilistic (99% so the more steps -> more variability) while

Python is procedural (given inputs will get same outputs)

Reflection — The ability to inspect failures and repair its own logic.

Memory — Persisting state across steps and executions.

Orchestration — A reasoning engine coordinating everything in real time.

The DOE Framework (covered later) operationalizes this loop without hiding it behind

abstractions.

2. The Mathematics of Failure: Why Chains

Break

The core barrier to production‑grade agents is stochasticity.

LLMs are probabilistic systems. They don’t predict the single ‘best’ next word, they predict a

distribution of options. When you chain multiple AI‑driven steps together, error rates compound

exponentially.

If each step succeeds 90% of the time, a five‑step workflow has a success rate of:

Probability of success = 0.9^5 ~ 0.59

A 59% success rate means failure four times out of ten. In business terms, that looks like:

incorrect invoices

missed leads

corrupted CRM data

quiet operational decay

4

Waiting for “smarter models” does not solve this. The solution is architectural.

By isolating reasoning from execution, the DOE Framework restores determinism where it

matters—while still leveraging intelligence where it creates leverage.

3. The DOE Framework

Directives, Orchestration, Execution

Rather than introducing another orchestration layer, DOE uses a version‑controlled

filesystem as the control plane. Simple. Inspectable. Auditable.

You can see the specific file structure in the Appendix A1. DOE is just a folder structure with two

main folders: directives and execution; that’s really all you need to get started

Directives folder holds Standard Operating Procedure (SOP) markdown files - aka an

agent’s instruction manual

“Markdown” or .md is just a common markup language designed to format

plain text; widely used in technical documentation

Execution folder holds python (or language of choice) scripts, where the automation

logic lives

WHY IT WORKS

It is intuitive and easy to understand.

It reduces stochasticity by separating concerns into 3 layers and (in turn) error rate.

3.1 Layer 1: Directives (The What)

Directives are Standard Operating Procedures written in Markdown. They contain zero

code.

A Directive defines:

the mission

expected inputs
5

allowed tools

success criteria

Why it exists

Separates business intent from technical implementation

Tradeoff

Requires precise technical writing. Ambiguous directives produce hallucinated paths.

3.2 Layer 2: Orchestration (The Manager)

The Orchestrator is the LLM itself—typically operating inside an IDE (VS Code, Cursor).

It reads the Directive, evaluates state, and selects which Execution script to run next.

Why it exists

Handles the unforeseen: API failures, partial data, ambiguous outcomes

Tradeoff

Highest intelligence surface area—and highest token cost

6

Notice the IDE (Layer 1 and 3 on the left in my workspace, Layer 2 IS the LLM in my terminal

window)

3.3 Layer 3: Execution (The How)

Execution scripts are modular, deterministic code—Python or TypeScript.

send_email.py does not reason. It accepts inputs and performs a single action.

Why it exists

Restores 100% reliability for real‑world side effects

Tradeoff

Requires upfront investment to build a reusable tool library

4. Case Study: The ClickUp CRM Manager

Consider a lead that enters onboarding but never books a kickoff call.

A legacy automation sends a single reminder—and stops.

A DOE‑based CRM Manager responds with context.

4.1 Onboarding & Nudge Logic

1. Trigger — Builder prompts: “Check for cold leads in the Onboarding list.”

2. Orchestrator — Reads directives/onboard_client.md

3. Execution — Runs check_clickup_status.py

{ "status": "Awaiting Call", "days_since_onboarding": 4 }
7

4. Reasoning — Directive specifies a 3‑day nudge threshold

5. Execution — Runs send_email.py with a personalized template

6. Self‑Annealing — On failure:

log error to .tmp/onboarding_log.txt

tag ClickUp task as Failed to Nudge

request human intervention

Failures are captured, surfaced, and repaired—not silently ignored.

5. How to Improve Agentic Workflows Over

Time

5.1 The Order-of-Magnitude Rule

Only optimize when you can achieve an order-of-magnitude improvement in a key metric.

As a rule of thumb:

Optimize only if you can achieve ~5× improvement in:

Time

Cost

Accuracy

Reliability

A workflow that runs in 2 minutes instead of 3 is rarely meaningful—unless runtime is the core

constraint. Most of the time, it isn’t.

Chasing small deltas creates the illusion of progress while consuming real engineering effort.

5.2 Beware of Micro-Optimizations

Small optimizations often come with hidden costs:
8

Reduced accuracy

Lower reliability

Increased fragility

Harder-to-debug systems

In agentic systems especially, shaving seconds off execution often means:

More brittle prompts

Tighter coupling between steps

Less tolerance for ambiguity or edge cases

This is how systems slowly decay.

Do not overengineer for marginal gains.

5.3 Time Beats Money

In agentic workflows, your time is the dominant constraint.

Compute is cheap

Tokens are cheap

Engineering attention is not

Spend effort where it actually compounds:

Reusable abstractions

Durable directives

Execution patterns that generalize

If an optimization saves money but costs hours of design and maintenance, it is almost always

the wrong trade.

5.4 Treat Your Library as the Asset

Your real leverage is not any single workflow—it’s your library.

Your prompt directives are infinitely reusable

Execution scripts can be dropped into any workspace

System instructions travel cleanly across projects9

This is no different from:

Make.com automations

n8n workflows

Gumloop pipelines

Same principle.

Over time, your IDE or agent workspace becomes a treasure trove of deployable capability.

Eventually, your system can support:

Automatic lead scraping

Email enrichment and validation

Personalized outreach and follow-ups

Automated proposal generation

Slide deck creation that matches your tone of voice

And critically—

All of it customized to communicate in your intent, your voice, and your standards. Not

generic AI output.

6. Scaling via Context Isolation

The most common agentic failure mode is context pollution.

As conversations grow longer, models become noisier and less reliable.

6.1 Parallelization in the IDE

DOE avoids complex multi‑agent orchestration code. Scaling is procedural.

Open multiple IDE panes
10

http://make.com/

Each pane is a fresh context window

Example:

Pane 1 — Lead research

Pane 2 — CRM enrichment

Pane 3 — Outreach drafting

By isolating context, each pane maintains high reliability instead of degrading over time.

7. Self-Annealing Workflows

Self-annealing simply means self-hardening.

A self-annealing workflow:

Diagnoses its own failures

Applies fixes

Updates its internal state

Retries execution

In practice, this looks like a tight feedback loop:

Diagnose → Fix → Update → Retry

Rather than treating errors as terminal, the agent treats them as input. Over time, this introduces

stability, not brittleness.

The system does not need to be perfect—it needs to learn how to recover.

11

8. AI Safety in a Text-Based Interface

Agentic systems are probabilistic. That reality must be designed around, not ignored.

8.1 Guardrails for Cost and Risk

At minimum, agents should be constrained by the following rules:

Confirm before making API calls above a defined cost threshold

Example: explicit approval required for usage exceeding $5

Never modify credentials or API keys without explicit approval

Never move secrets out of .env files or hardcode them into the codebase

Log all self-modifications

Append changes as a changelog at the bottom of the directive

Treat every mutation as auditable state

8.2 Accepting the Probabilistic Tradeoff

Agents do not offer 100% compliance. That is not a flaw—it is the cost of flexibility.

Instead of chasing perfect prevention:

Design for graceful recovery

Expect deviations

Make failures observable and reversible

This mindset shift is foundational to reliable agentic systems.

9. Maximizing Efficiency and Throughput

Speed is not just compute—it is human interaction bandwidth.

12

9.1 Speak, Don’t Type

Enable dictation or voice-to-text wherever possible.

Average typing speed: 50–70 WPM

Average speaking speed: 150–200 WPM

That delta compounds quickly in long sessions.

9.2 Specificity Without Overthinking

Specificity matters—but memorization does not.

To run a workflow, just ask for it

You do not need to remember directive names

The agent will scan for applicable instructions

Think of it like ordering food:

You ask for the item ("I’d like a cheeseburger with fries)

The kitchen handles the execution

9.3 Steering vs. Error Surface Area

Vague prompts work—but expect clarifying questions

Specific prompts take seconds longer but reduce ambiguity

Every additional step delegated to the agent introduces another chance for error.

Compounding error is real:

.9 × .9 × .9 ≠ .9

Precision early reduces correction later.

13

10. Watching Workflows as They Run

Do not treat workflows as black boxes.

10.1 Why Observation Matters

Watching execution in real time helps you:

Understand internal decision paths

Identify failure points faster

Iterate more effectively

10.2 Use the Thinking / Reasoning View

Opening the reasoning or thinking tab is not optional—it is educational.

You learn how the agent thinks

This matters because the agent will increasingly replace manual effort

Understanding its mental model improves delegation quality

11. Hooks, Notifications, and Long-Running

Jobs

For longer workflows, passive waiting is inefficient.

Set up hooks:

Audio chimes

Notifications

Status prompts when input is required

TL;DR:

If a workflow takes long enough for you to context-switch, it should notify you when it’s done—or

blocked.
14

12. Reviewing Output and Chaining

Workflows

Completion is not the end of responsibility.

12.1 Human-in-the-Loop Is Non-Negotiable

When a workflow finishes, it produces a deliverable:

Document

Link

Email

Dataset

Always review the output before proceeding.

Catching issues early prevents downstream propagation.

12.2 Chaining Without Compounding Error

Individual workflows are useful.

Chained workflows are leverage.

Example:

Workflow 1: Lead scraping

Workflow 2: Email enrichment

Workflow 3: Personalized first-line generation

This modular chain outperforms a single monolithic workflow attempting all steps at once—

without increasing error rates.

12.3 When the Agent Needs Help

Sometimes the agent will stop and ask:

What it was trying to do
15

What went wrong

What options exist to fix it

Respond plainly. Point it in the right direction. Continue—or stop and restart with corrected

assumptions.

12.4 Sensitivity-Based QA Rules

High sensitivity tasks → Always QA

Customer-facing content, financial documents, invoices, proposals

Low sensitivity tasks → Can remain automatic

Scraping, transformations, logic-tested outputs

And some things simply should not be automated:

Live voice interactions

High-stakes real-time communication

13. Cloud Deployment: Architect vs. Resident

A senior systems engineer distinguishes between design and runtime.

The Architect — The IDE, where logic is built and repaired

The Resident — The cloud, where logic executes continuously

Deployment Flow

1. Develop Locally — Use the LLM to anneal execution scripts

2. Deploy as Webhooks — Convert scripts to cloud functions (AWS Lambda, Modal)

3. Observe via Logs — Post every run to #agent-logs

Failures are never debugged in the cloud. Logs are brought back to the Architect for repair.

16

13.1 From Design to Execution

LLMs design workflows

Execution scripts run deterministically

Scripts only need a trigger

Just say:

“Turn this into a cloud function.”

Example:

Deploy Python functions via Modal using a webhook URL

13.2 What a Webhook Really Is

A webhook is simply:

A URL

Receiving an HTTP POST

Triggered by an external event

Events can include:

Purchases

Commits

Comments

Scheduled jobs

13.3 When to Deploy to the Cloud

Deploy when workflows are:

Scheduled (daily reports, weekly summaries)

Recurring

Event-driven

17

13.4 Observability Is Mandatory

Cloud failures are harder to diagnose than local ones.

Requirements:

Explicit logging

Centralized status reporting

Failure notifications

Example:

Slack channel #agentic-cloud-log

Every workflow posts success or failure

Failures link directly to deployment logs

Prompt example:

“Give me a status check on all my Modal deployments.”

13.5. Scheduled Deployment

Scheduling is just automation with accountability.

Example directive:

“Deploy this workflow on a cron schedule.”

Options:

Every 5 minutes

Mondays, Wednesdays, Fridays at 9 AM

Daily at midnight

18

14. Scaling via Context Isolation

The most common agentic failure mode is context pollution.

As conversations grow longer, models become noisier and less reliable.

14.1 Parallelization in the IDE

DOE avoids complex multi-agent orchestration code. Scaling is procedural.

Open multiple IDE panes

Each pane is a fresh context window

Example:

Pane 1 — Lead research

Pane 2 — CRM enrichment

Pane 3 — Outreach drafting

By isolating context, each pane maintains high reliability instead of degrading over time.

Now that you get the basics, let’s build on it…

15. Sub-Agents

As agentic systems scale, their most common failure mode is not logic—it’s context pollution.

15.1 The Context Pollution Problem

Context pollution occurs when intermediate reasoning, partial attempts, retries, and exploratory

work accumulate in a single conversation window. Over time, this clutter degrades performance.

There is a well-documented relationship between context length and error rates:

More tokens → more opportunities for mistakes

All else equal, longer contexts are noisier and less reliable

19

This is not theoretical. It is observable behavior across models and workloads.

15.2 How Sub-Agents Solve the Problem

A sub-agent is a deliberately isolated, task-scoped AI worker that operates in its own fresh

context window, performs a specific job, and returns only its relevant outputs to a parent

(orchestrating) agent.

In other words: a sub-agent does the messy work elsewhere so the main agent stays clean,

focused, and reliable.

Sub-agents address context pollution through isolation.

Instead of forcing one agent to:

Think

Explore

Fail

Recover

And still stay sharp

You delegate the messy work elsewhere.

Each sub-agent:

Operates in its own fresh context window

Performs a narrowly scoped task

Returns only relevant, distilled results to the parent agent

This mirrors how modern models already behave internally:

Intermediate “thinking” is discarded

Only the final output is retained

Token budgets stay lean

Sub-agents externalize that same principle.

15.3 Performance Evidence

Empirically, this approach works.

20

Data shows that:

Opus-based lead agents using Sonnet sub-agents outperform single-agent

Opus setups by ~90% on research-heavy tasks

The gains come not from smarter reasoning—but from cleaner context.

15.4 The Tradeoffs

Sub-agents are not free.

There are real costs:

Increased implementation complexity

More moving parts

Risk of error compounding across agent boundaries

This is why restraint matters.

Recommendation:

Stick to one or two sub-agent types initially. Do not over-orchestrate.

Here’s two I like:

Reviewer subagent - the Orchestrator wrote the code so biased towards its

“correctness - like a writer proofreading their own work immediately after writing it

Example prompt: “I’d like to create a subagent. The idea behind the subagent is it will

look at the execution scripts another agent develops with fresh eyes and determine if it

is done effectively or efficiently. It will then provide instructions to the top-level agent

which can then apply the guidance to improve the quality of the build”…

“After you create any script, use the reviewer subagent to check for its quality”

Documenter subagent - Updates your directives based on what the system has

learned over time

21

Ensures self-annealing executions get documented; read access to all files, write access to

directives

15.5 High-Leverage Sub-Agent Patterns

Two sub-agent types deliver outsized returns with minimal complexity.

REVIEWER SUB-AGENT

The orchestrating agent is biased toward its own output—like a writer proofreading immediately

after writing.

A reviewer sub-agent provides:

Fresh eyes

Independent judgment

Reduced confirmation bias

Use

16. Final Thoughts

The future is cloud-native agents.

Imagine:

Sending a natural-language query to a URL

basepath/?action=do_the_thing

A reliable, observable workflow executes

Just systems, designed correctly.

16.1 Next Steps

You have two paths forward:

22

1. Self‑Serve — Download AGENTS.md from my downloads link

https://collinwilkins.com/agents, insert into your IDE and instruct your agent to “Set up

this workspace according to AGENTS.md , add applicable CLAUDE.md , GEMINI.md ,

and copilot-instructions.md if using Copilot.”

2. Collaborate — Let’s connect to explore your specific architecture and operational

constraints.

Technical Appendix: The DOE Workspace

Standard

A.1 Folder Structure

/my-agent-workspace

├── AGENTS.md # Master system instructions

├── CLAUDE.md # Model-specific steering

├── GEMINI.md # Model-specific steering

├── .env # Secrets

├── /directives # Markdown SOPs

│ └── onboard_client.md

├── /execution # Deterministic tools

│ ├── send_email.py

│ └── clickup_api.py

└── /.tmp # Logs and ephemeral state

A.2 .env Template

Core API Keys

CLICKUP_API_KEY=pk_...

SMTP_PASSWORD=...

OPENAI_API_KEY=sk_...

Business Logic

COMPANY_NAME="My Firm"

CALENDAR_LINK="https://cal.com/me"

23

https://collinwilkins.com/agents

24

